跳到主要内容

偏导数在求极值中的应用

· 阅读需 2 分钟
Versed_sine
Website Developer

前置知识

“偏导数”一课通!1h零基础上手!|高数下
信息

求导法则:

F(x)=f(x)±g(x),F(x)=f(x)±g(x)F(x)=f(x)g(x),F(x)=f(x)g(x)+f(x)g(x)F(x)=f(x)g(x),F(x)=f(x)g(x)+f(x)g(x)g2(x)F(x)=f[g(x)],F(x)=f(g(x))g(x)\begin{align*} & F(x) = f(x) \pm g(x), & F'(x) = f'(x) \pm g'(x) \\ & F(x) = f(x) \cdot g(x), & F'(x) = f(x) \cdot g'(x) + f'(x) \cdot g(x) \\ & F(x) = \frac{f(x)}{g(x)}, & F'(x) = \frac{f'(x) \cdot g(x) + f(x) \cdot g'(x)}{g^2(x)} \\ & F(x) = f[g(x)], & F'(x) = f'(g(x))\cdot g'(x) \end{align*}

例题

不等式核心思想方法,分离与配凑?

题面

a,b>0a, b > 0,求 ab+ba2+b2+1\dfrac{ab+b}{a^2+b^2+1} 的最大值。

偏微分解法

f(a,b)=ab+ba2+b2+1f(a, b) = \dfrac{ab+b}{a^2+b^2+1}

fa=b(a2+b2+1)2[(a2+b2+1)2a(a+1)]=b(a2+b2+1)2(b2a22a+1)\begin{aligned} \dfrac{\partial f}{\partial a} &= \dfrac{b}{(a^2+b^2+1)^2} \cdot [(a^2+b^2+1)-2a(a+1)] \\ &=\dfrac{b}{(a^2+b^2+1)^2} \cdot (b^2-a^2-2a+1) \end{aligned}

fb=a+1(a2+b2+1)2[(a2+b2+1)2bb]=a+1(a2+b2+1)2(a2b2+1).\begin{aligned} \frac{\partial f}{\partial b} &= \frac{a+1}{(a^2+b^2+1)^2}\cdot[(a^2+b^2+1)-2b\cdot b] \\ &=\frac{a+1}{(a^2+b^2+1)^2}\cdot(a^2-b^2+1). \\ \end{aligned}

取极值时 fa=fb=0\dfrac{\partial f}{\partial a} = \dfrac{\partial f}{\partial b} = 0,即: {b2a22a+1=01a2b2+1=02\begin{cases} b^2-a^2-2a+1=0 & \textcircled{\scriptsize 1} \\ a^2-b^2+1=0 & \textcircled{\scriptsize 2} \end{cases}

1+2:22a=0\textcircled{\scriptsize 1}+\textcircled{\scriptsize 2}: 2-2a=0,即 a=1a=1

易得 b=2b=\sqrt{2}

f(a,b)max=f(1,2)=224=22\therefore f(a, b)_{\max} = f(1, \sqrt{2}) = \dfrac{2\sqrt{2}}{4} = \dfrac{\sqrt{2}}{2}